PARTIAL DIFFERENTIATION

Introduction :-

Partial differential equations abound in all branches of science and engineering and

many areas of business. The number of applications is endless.

Partial derivatives have many important uses in math and science. We shall see

that a partial derivative is not much more or less than a particular sort of directional

derivative. The only trick is to have a reliable way of specifying directions ... so most of

this note is concerned with formalizing the idea of direction

So far, we had been dealing with functions of a single independent variable. We will now

consider functions which depend on more than one independent variable; Such

functions are called functions of several variables.

Geometrical Meaning

Suppose the graph of z = f(x,y) is the
surface shown. Consider the partial
derivative of f with respect to x at a point
(xo, yo). Holding y constant and varying x,
we trace out a curve that is the intersection
of the surface with the vertical plane y = yo.
The partial derivative f{xq,ys). measures
the change in z per unit increase in x along
this curve. That is, fi(Xo, yo) is just the slope
of the curve at (xo, yo). The geometrical
interpretation of f(xo, yo). is analogous.
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Real-World Applications: v

Rates of Change:
In the Java applet we saw how the concept of partial derivative could be applied

geometrically to find the slope of the surface in the x and y directions. In the following
two examples we present partial derivatives as rates of change. Specifically we explore
an application to a temperature function ( this example does have a geometric aspect in
terms of the physical model itself) and a second application to electrical circuits, where
no geometry is involved.

|. Temperature on a Metal Plate

The screen capture below shows a current website illustrating thermal flow for chemical
engineering. Our first application will deal with a similar flat plate where temperature
varies with position.

* The example following the picture below is taken from the current text in SM221,223:
Multivariable Calculus by James Stewart.
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dissolved species. The transport of this speces takes place by diffusion
and convection
Bartem sotmty hund (L) Sm—ght o (g1
Home
FEMLAS ’ ) $r
Chemical Engineering »
Eloctromagnetics » w0
Structural Machanics »
Activitles » "
mm . wx L
Pmﬂm - =
Downloags |
" Rl
Contact Us g I
Compary Info o
8] Dome S e

Scanned by CamScanner



Suppose we have a flat metal plate where the temperature at a point (x,y) varies '
according to position. In particular, let the temperature at a point (x,y) be given by,
T(x,y)=60/1+x>+y’

where T is measured in °C and x and y in meters.
Question: what is the rate of change of temperature with respect to distance at the point
(2,1)in (a) the x-direction? and (b) in the y-direction ?
Let's take (a) first.
What is the rate of change of temperature with respect to distance at the point (2,1) in
(a) the x-direction?
What observations and translations can we make here?
Rate of change of temperature indicates that we will be computing a type of derivative.
Since the temperature function is defined on two variables we will be computing a partial
derivative. Since the question asks for the rate of change in the x-direction, we will be
holding y constant. Thus, our question now becomes:
What is 47/ at the point (2,1)?

T(x,y)=60/1+x"+y’ =601+ x* + y*)™

T/ =-60Q2x)(1+x* +y*)?

T/ (2.1)=—60(4)(1+4+1)7 =20/
Conclusion :

The rate of change of temperature in the x-direction at (2,1) is -3% degrees

per meter;

note this means that the temperature is decreasing !
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1. If u=e"" sin (ax + by) show that ba—u_-ao“=23bu '

-~
3

ox Oy

Solution : u=e™" sin (ax + by)

% =e"™ ™ cos (ax + by) . a+a.e™™ sin (ax + by)

ie., gu—;=ae“"'b" cos (ax + by) + au (1)

Also <= ¢ cos (ax +by) .b+ (- b)e™™ sin (ax + by)

ox

ie., %= be™ ™ cos (ax+ by)—bu (2)

Now b g= a on by using (1) and (2) becomes
=abe™™ cos (ax + by)+ abu - abe™™ cos (ax + by)+ abu
=2 abu

Thus b% - a%=2ahu

2. Ifu=e™"" f (ax - by), prove that
b % =a % = 2abu

Solution : u =e™*" f (ax - by), by data

%:e“”b" £ (ax - by)a + ae™*™f (ax - by)

Or $=ae‘“*"" £ (ax -by)+au (1)
ox

ou ax +by er ax 4+ by

Next, Pk f'(ax -by). (-b)+be™*™ f (ax - by)

Or @= —be ™* f'(ax - by)+ ba -.(2)
dy

Now consider LH.S =b% -
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=b {ae“"‘”‘" f' (ax - by)+ an}+ a {- be“** £’ (ax - by)+ bu} '

=abe™*" f’ (ax - by)+ abu -abe™*" £’ (ax - by)+ abu

=2abu=RHS

Thus b@+a95=2abu
ox Oy

8 Wumlog ¥y e showthar ¢y ) 20, 20, 20
ox~ oy oz
Solution : By data u = log m=%log(x3+y2+zz)

The given u is a symmetric function of x, y, z,
(It is enough if we compute only one of the required partial derivative)

ou 1 | X
—=— i, e ——
ox 2 x"+y +z° X +y +2z°

oo () o
o’ ox \ox) ox|\x*+y*+2°

(.1'2+y3+zl)l-x 2% y:-i-zl-x2

R T Iy

st

Similarly . 3;‘2‘ - (:::";‘T -(2)
&u_ x4y -2 -3

oz’ (.\'2 +y? +z3)2
Adding (1), (2) and (3) we get,
v d'u d'u P +yi+7? 1
2 7+ 2= 5= "> 5 2
ox” a\’- 3:- x3+yg+zz} x—+y_+2"

8’u 8’u aqu
2 + =1

Thus (x3 +y’ “2)[6
X
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4. If u=log (tan x + tan y + tan z), show that, '

sin2x ux +sin2y uy+sin2zu, =2
Solution : u = log (tan x + tan y + tan z) is a symmetric function.

2
sec x

.=
' tanx+tany+tanz

_ (2sin x cos .\') sec. x

sin 2xu,
tanx+tan y+tanz
g 2tan x
Or sin2xu, = (1)
" tanx+tany+tanz
e g 2tan y
Similarly sin 2y u = Y -(2)
° tanx+4+tan y+4tanz
: 2tan z
sin2zu, = .(3)

lan x+tan y+ tan z
Adding (1), (2) and (3) we get,

2(lan X +tan y + tan z)__2

sin 2xu, +sin2yu, +sin2zu, = (!an iy e z) =

Thus sin 2x u, +sin2yu +sin2z u, =2

5. If u=log (x? + y? + z° - 3xyz) then prove that @+@+@= and hence show
Ox 0y 0z x+y+z
o ) S
ox Oy oz (x+y+2)

Solution : u =log (x* + y* + 23 - 3xyz) is a symmetric function

31 -3yz

(1)

Y +y +2z -3ayz

wi{2)

&

ox

@_ 3)‘2 -3zx
O C+y’+z’- 3xyz
o

332-3xy
oz X+y'+7z'-3xyz

Adding (1), (2) and (3) we get,

-(3)
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& oy oz (.t3+y3+z3-3xsz

Recalling a standard elementary result,

ou Ou +@_ 3(.t2:f- y3+zz—.1y—yz:zr)

a’+b’+¢’ -3abc=(a+b+c)(az+bz+c2-ab—bc—ca)

We have,
_faﬂ.,.@.F@: 3(-"2+,}’2+22—.1}'—yz—zx)
ox oy oz (.t+y+z)(.t2+y3+zz—,w_yz-m-)
Ou du odu 3
Thus —+ —+—=
ox 8y 0z x+y+z
o a2 oY
Further | —+ — 4+ —
urther {a“+ay+azJ u
(6 0 o)(o @ a)
= _+_+_ —_— e — u
\ax ay 321 \6_1 ay az
(2,2, 0)(ou, 2 au
\Ox 0y oz)\ox oy oz
/ \ £
0 o0 o
(o oy oz \“_y_*.z) y using the earlier result
o( 3 J,o0( 3 ),0f 3
ox\x+y+z) Oy\x+y+z) dz(x+y+z
-3 -3 -3 -9

= +
(x+y+z) (x+y+z) ¥

0,0, 90
ox oy oz

W
(.1‘+y+z)2

Thus { J u

G+y+zf  (x+y+2)
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6. If u=f(r) and x=rcos @, y=rsin @,

i a—‘_'-f(n £1)

Solution :Observing the required partial derivative we conclude that u must be a function of x, y. But
u = f(r) by data and hence we need to have r as a function of x, y. Since x=rcos 0, y=r

sin 6 we have x2 +y2 = 12,

. wehaveu =f (r) wherer = W
o’u _ f'(r) i ()
al P (r )
(r) (") 2
a‘ 2 r3 ( ) . :
Adding these results we get,

e O (e D)

ax’

x> and

L0 2 S0 el e )

r

08 LY _prlslf
C. cy | §

ou du
1. Provethat x—+ v — = nu
x ~ dy

Proof : Since u = f (x, y) is a homogeneous function of degree n we have by the definition,

u=x" g(yf'x) ikl
Let us differentiate this w.r.t x and alsow.r.ty

@=.r" . g (y;’x).[- %]+ nx" ' g (y/x)
x

ox

ie., ? =x"Cyg (ya)+nx"" g(y/ .r) (2)
X

ou_ o r(un) (L
Also 6_\'_x .g (yh).[IJ
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ie., %=x“" g (yz‘.t)

o

Now consider x o +y % as a consequence of (2) and (3)

Ox oy

of

2y (ya)+n g (v y et g (v 7 x)]

—x"y g (yix)+nx" g(yx)+x" "y g (ya)

=n.x"g (y/.r)
=n u, by using (1)
Thus we have proved Euler's theorem

Ox

Provethat x? 2% 425y 21
ox” 0x Oy

ou
X—+y_—=nu

ox "oy

ou
,\—+yg-nu ru,.+yu =nu

=n(n-1)u

Proof : Since u = f (x, y) is a homogeneous function of degree n, we have Euler's theorem

(1)

Differentiating (1) partially w.r.t. x and also w.r.t y we get,

6' u ou d’u ou
—+ 1. +y =n—
3 2 ox Ox dy Ox

Bu au ou

(2

We shall now multiply (2) by x and (3) by y.

7611 du azl.l

=nx— and
ac . ey ah
y d’u £ d%u —ny@
Oy Ox oy° oy oy
o’u Bzu
Adding these using the fact that we ge
g g yor  oyar Moot

Scanned by CamScanner



t363u+2 azu+ 23211 + x@*_ Q_{ =n t@'f” —_—
Yo Py Y oy a ) oy Yo oy

. ,0% %u  ,0% )
e, xX'—+2xy———+ s+nu=n{nu) by using (I
ol T Y aay Y oy (nu).by using (1
or xzah‘,]+2.ryal+yza‘?+n(nu)-nu=n(n-l)u
ox” Ox oy~
1621.1 Bzu 1321]
Thus x* —-+2x +y"—+ n(n-1)u
o V5 VY o (n-1)

ie, x’u_ +2xy u, + y"‘uﬂ. =n(n-1)u

9. =2y ¥ o 2 showthatx@+y@+z@=0
y+z z+x x+y ox oy oz

Solution : (Observe that the degree is 0 in every term)

x y z
u= + +
y+z z+x x+y

We shall divide both numerator and denominator of every term by x.

s 1 y!(.l' A i ' :
hE y/,r-i-zfx-'- z/x+1 * l+y!.r-“ {g (WA.?JA)}

= uis homogeneous of degree 0. .. n=0

We have Euler's theorem, x N +y . +z B, =nu

Ox dy oz

. u du  du
=0weget, x —+y—+z—=0
Putting n = 0 we get, x o +y—+z

4 4 - .
10. Ifu=log el showlhal.to—“+yﬂ=3
xX+y ox oy

Solution : we cannot put the given u in the form x" g (y/x)

ol = x* -1}-_\,'4 _ .11'4(l+y4 !'.rd)_x_g {I +(y/.r)"}

x+y x (l+yfx) - 1+(y/x)
ie., e*=x3g (y/x) = eYis homogeneous of degree 3 .. n=3
Now applying Euler's theorem for the homogeneous function e

) G
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We have x 6(3“ )+ y a(e“ )= ne" '

ox oy

; s Ou s Ou n
e, xe' —+ye —=3e
Ox

oy

. ou Ou
Dividing by ev etx —+y—=3
viding by e“ we get x o yay

3

] ¥
If uztan"['t =) ] show that
x-y

(i) xuc+yuy=sin2u
(il) X2y +2 X Y Uey + YUy, =sin4 u-sin 2 u

3 3
Solution : (i) u=tan" [‘t hic } by data
x-y

x-y  x(-yx) 7 |1-(y/x)

ie., tan u = x%g (y/x) = tan u is homogeneous of degree 2.

=> tan u='!'f3+y3 =x3(l+y3fx3)_,\-z{l+(yfx)3}

Applying Euler's theorem for the function tan u we have,

d(tanu)  8(tanu)
o Y 3

=n.tanu;n=2

: 2 , Ou
Ie., xsec u6—+ysec‘ u—= 2tanu
X

du &u 2tanu » sinu
or X —+y_—= =2cos" u

: =2cosusinu=sin2u
Ox dy sec u cosu

o XU, +yu, =sin2u

()  Wehavexuc+yuy=sin2u w{1)
Differentiating (1) w.r.t x and also w.r.t y partially we get

xu,+1.u, +yu, =2cos2u.u, a2
And X Uy +yuy +1 . uy=2cos 2u . uy .(3)
Multiplying (2) by x and (3) by y we get,

2
xu, +xu +xyu, =2cos2uxu,
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12.

xyu, + y? u,, +yu,=2cos2u yu,

Adding these by using the fact that uy, = uxy, we get
Pu,+2xyu, +ylu, +(xy1 + yuy)= 2 cos 2u (.tl.l_‘ +y uy)
By using (1) we have,

u, +2xy Uk yzuﬂ, =2c¢os 2u sin 2u-sin 2u

(since sin 20 = 2 cos 0 sin O, first term in the R.H.S becomes sin 4u)
Thus X2Uyx +2 X Y Uey + Y2 Uy = sin 4 U —sin 2u

Xy z ou ou Ou
Ifu=f|—,= —|Provethat x —+y—+z—=0
. [y z'x) xax yay ‘o

>> here we need to convert the given function u into a composite function.

Let u=f (p,q. r)wherep=£‘q=~,r=E
y X

e, fus(p.ar)>kxylmuaxy.z

LOu_udp dudg dudr
Oy Gpdx dgox o dx

'__h'__ (1)

yo=t -t (2

g BN I -3)

Adding (1), (2) and (3) we get x ?+ y@ +z fa =0
AN

oy oz
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13.  Ifu=f(x-y,y~-2 z-x) show that ﬂ+ﬂ+%—0 '

ox oy 0z
>>letu=f(p,q rywherep=x-y,q=y-zr=z-x
L Ou_oudp dudg duor

T ax dp ox Eaﬁarﬁ
. Ou_0Ou ou
e, —=— .14 — 0+—|(-1
=" n 't o (-1)
ou_ou ou (1)
Oox Op or
Similarly we have by symmetry
ou_ou o (2)
d 09 Oop
du du odu
o T e (3
0z or dq ©)

Adding (1) (2) and (3) we get, = cu % =0

@
ay
14.  Ifz=f(x,y)wherex=rcos # andy=rsin @
y) 2 2 2
oz) (oz 0z 1(ézY
shou it (2] +( 2] -(3) +(5)
Solution: {z > (x,y)—> (r.08)} = z—> (r.0)

O _bu0x dudy bzdx Ordy
"or ox or dyor xo8 oy 08

e, %=§c059+% §in@ ()
and %——( rsin B)+— (rcose) [a_a‘z sin G+%cosﬁ]
or %=%= ;—22 si119+2 cos O

squaring and adding (1), (2) and collecting suitable terms have,
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(%]- + TLZ[%)- = (%)— [cosz 0 + sin 29]

- (%) [sirl2 9+cos:9]+2—g_—i %cosesin B-Z%g}%in Bcos®

AN CANCANN 2NN
L (arJ = (ae) _(aJ +[ayJ . RHS = LHS

i" Y:e'\l_el

15. If z= f(x,y)wherex=e" +¢

0z 0z 0z oz
Provetha‘t X —_— )’T= ===
ox "0y odu ov

Solution : {z— (x, y)— (u, v)}= 2= (u,v)
[ 8z_0z 0 10y 02 _dr0x Oz dy

So —= + =
Ou Ox Ou QOyou Ov oOxov @yaov

e, %:% e +f‘ (-ev) (1)
s e (o) -2

Consider RH.S = gu’: . % and (1) - (2) yields

RN TRNE S

Ox oy ox oy
Thus o % =x@ --yE ie, RHS=LHS
ou Oy Ox oy
. Ou,v,w)
16.  Find ————"where u =x2 + y2 + 22, v = xy+yz+zX, W=x+y+z
ﬁ(x,y.z)
ox oy oz
Solution:  The definiion of J= 2(0¥-W) v o 2
d(x,y,z) |ox oy &z
ox 0Oy @z

But  u=x2+y? +22 v =xy+yz+4zZX, WoX+y+Z
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Substituting for the partial derivatives we get

2x 2y 2z
J=ly+z x+z y+x
| 1 |
Expanding by the first row,
J=2x{{x +2) - (y +x)} -2y {{y +2) - (y +x)}
+2z {{y +2) - (x +2))
= 2 (2+) - 2y(zx) + 22(yx)
=2xz-xy-yz+xy+yz-xz)=0 Thus J=0

17. "“=E'V=E.W=ﬂ,showthat__—a(u‘v'w)=4
- y z a(x,y,z)
Solution:  bydatau= Y%, v= 22 w=2
X Yy 7
@ '6_u @ — Yz z y
ox 0y oz ) = %
dfwv.w)_ [ov av ov|_|z -zx x
a(x'y'z) ox ay 0z y yz y
ow ow owl |y X -—xy
ox o0y oz z - 22
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18.

Ifu+v=excosyandu-v=e*siny find the jacobian of the functions u and v w'
andy.

a
Solution:  we have to find ow,yv) _[ox oy
d(x,y) [0V ¢V

ox

Using the given data we have to solve for u and v in terms of x and y.

Bydatau+v=ercosy .. (1)
u-v=e<ssiny . (2)

(1) +(2) gives: 2u=e*(cosy +sin y)
(2) —(2) gives: 2v=e*(cos y-siny)

x X

le., u= %(cosy*«siny) V= % (cosy-siny)

, 0u _e' . ov e' X
“ax 2 (cosy +siny), x = > (-siny- cosy)
N B(u.v] %(COS y+siny) ?(— siny+cosy)
ow =
o(xy) e . —8* .,
7(005 y—siny) (siny+cosy)
=¢ e {-(cosy +siny)? in y)2
5 o i-(cosy sin y)? - (cos y - sin y)?}
_el‘ . _ef’_.t
- 1 2 1 -sin 2y)} =
o (tsin2y)+(1-sin 29)) = =

Alu.v)_ —e*

o(x.y) 2

Thus
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a(r,0)
a(x,y)

19. (a)ifx=rcos 0,y=rsin 0 find the value of

(b)  Further verify that ox.y) o) _,
r,

(r.0) " o(x.y)

)]

(n}]

(@)  Solution:  We shall first expressr, 0 in terms of x and y.
We havex =rcos 0,y =rsin 0 by data.

sx2+y2=12and Y =tan 0 or 0 =tan"! (y/x)
X

Consider r2 = x2 +y2
Differentiating partially w.r.t x and also w.r.t y we get,

or or
2r—=2x and 2r —=2
ox oy !
E: i and E: 1
O0X r oy r
Also consider 6 = tan ' (y/ x)
0_9: I — . _? and @: __l—_’ ] _1_
ox 1+(y/x)" «x° oy l+(y/x)" x
e, P- ¥V m e B
ox x'+y’ dy x"+y°
aror| | x y
Now o(r.0) _ ?f dy _ r r
o(x,y) (6006 | -y x
dx dy| |©2+y x*+)°
. X },2 (x* + _\-‘2) 1
Le., = 2 et 3 T 3 T
r(x>+y7) r(x+y’) r(x+y) r
Lo 1
S axy) r
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Solution (b): Consider x = rcos#, y =rsinf

ax ax
o(x,y) _|or a8 _
é(r.0) |0y oy
or dé
. O(x,y)
5 =p
o(r.0)

cos —rsiné .
) =r(cos’ @ +sin’ @)=r
sinf rcosé

o(x,y) o(r.0)

From (1) and (2) : =
(1) and (2 o(x,0) 0o(x,y)

1
r-—=1
r

20. K x=u(l-v)y=uv thenshowthat JJ' =1

Solution : x=u(l-v); y=uv

ox oy ox oy

_=(]_p)_ —_=y —=—II.T=II
ou Ou ov ov
axox
7=0y) _|6u av|_ (A=v)-u
o(u,v) é\_é v ou
Cu Ov
=(-vu+uv=u .. J=u

Next we shall express u and v in terms of x and y.
Bydatax=u-uvandy=uv

y y
Henoex+y=u. Also y=—=—
u x+y
y u du
Now we have, u = x+ y;v=— L=l =,
X+y ox oy
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o (x+y)-0-y-1_ X

& (x+y2  (x+ y)*
A I
, O(u,v) |6x Oy
— =l . |= -y X
o(x,y) |Ov 0Ov ; -
: =~ | [(x+¥)° (x+¥)°
éx Oy
- y _ x+y 1 1

= + =
(x+y)°" (x+y) (x+y) (x+y) u

Thus J' =l Hence J-J’ =u-lThus J1' =1
u u

21.  State Taylor's Theorem for Functions of Two Variables.

Statement: Considering f (x + h, y + k) as a function of a single variable x, we have by
Taylor’s Theorem

fxehysk)=f(cyrk) +h TEIHR I I fyrb) )
ox Pl ox’

Now expanding f (x, y + k) as function of y only,

fx,y+k)=f(x, y)+k @_'_E;a'f(x,_\')*_
Al

2! 6}?2
- (i) takes the form f (x + h, y +K) = f (xy) + k L&) | O‘f({r.,vr)+ .
O_ 2' 6_)"
Ay K fxy)
h — L%y X OJTNY) o
a{f“) &y 2 oy’ }
hz o’ o(x, \)
yy+ &8y,
s {f“ WFE }

Hencef(x-n-h,y-t-k):f(x,y)--hi+ki+—l- h*——4 ¢
ox oy 2 ox” OxOy oy

In symbol we write it as
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F(x +h y+k)=f(xy)+ h£+k2 f+i hia-ki f+=——-
ox Oy 20 ox oy

Taking x=aand y=b, (1) becomes

f(a+h b+k)=f(ab)+[nf(ab)+kfy(ab) +% [h 2 f x (a,b)+ 2hkf »y (a,b)

+k 2fyy(a,b)] +
Putinga+h=xandb+k=ysothath=x-a, k=y-b, we get

F (xy) =f(ab) +[(x-a) fx(ab) +(y - b)fy (a,b)]
= % [(x —a)*f x (a.b) + 2 (x — @) (y — b) fxy (a,b) + (y — b)? f 4y (a,b)] +—— (2)

This is Taylor's expansion of f (x,y) in powers of (x - a) and (y —b). Itis used to expand f (x,y)
in the neighborhood of (a,b)

corollary, putting a=0, b=01in (2), we get

f(xy) =f(0.0)+[x fx(0,0) +yfy (0,0) «% [X2F (0,0) + 2%y f oy (0,0)

+y2fy (0,0)] + ———(3)
This is Maclaurin's Expansion of f (x,y)

22.  Expand e*log (1 +y) in powers of x and y up to terms of third degree.
Solution: Here
f(xy)=exlog(1+y) ..f(0,0)=0

f(xy)=exlog (1+y) .. :(0,0)=0

fy(xy)=ex = fy(0,0)=1

I+y
fa(xy)=exlog (1+y) .. fx(0,0)=0

fay(xy)=er —— iy (0,0)=1
1+ y
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fy(y)=-ex(1+y)2 - fy(0,0)=-1

fox(xy)=exlog(1+y) .. fu(0,0)=0

1
f =e X -
wy (y) =€ X Fary (0.0) =1

fxy (xy)=-ex(1+y)2 .. fxy (0,0)=-1
Fyyy (xy)=2ex(1+y)3 . £, (0,0)=2

Now, Maclaurin’s expansion of f (x,y) gives

f(y) =£(0,0) +x (fx (0,0) +y, (0,0) «% 0 x (0,0) + 2xy fiy (0,0) +

y* fiy (0,00} + % {6 fioc (0,0) + 3x2 y fey (0,0) + 3xy? fiyy (0,0) + ¥ iy (0,0)} +

~exlog (1+y)=0+x0+y(1) +% (x2.0 + 2xy (1) +y2 (-1)}

. ~2'—| (0.0 + 3y (1) + Bxy? (-1) + y¥2)poemoree

yonr-Lped peapred po

23.  Expand f (x,y) = ex Cosy by Taylor's Theorem about the point (I. %J up to the Second

degree terms.

Solution: f(x,y) =e* Cosyand a = 1,

—— O
‘.l—‘
"
51

4“‘1 \f-___/
"

fe (x,y)=e*Cosy

fy (x.y) = -e*Siny

e

—
-

—
-

fu(x.y) = exCos y

Sl Sl

Eh
3
—

foy (x,y) =-€* Siny

h DRSNS
"
'

Sie &)

g

p—
NI LTS

fyy (x,y)=-e*Cosy

—
=

—
-

Hence by Taylor's Theorem, we obtain

1=(15)= 7
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f(x,y)=f[1,ﬂ +[(.rw1)f,+()-_%}ﬁ,]+ h '

% l:(x—l)’fl +2(x—1)(y-%]f“} P

ie., ex Cosy = % + [(_t_l).j_EJ,(y_%][_%Il,,%
o o545 (- ()

exCosy=\7% [H(.t—l)—(."“%J]"'%{(x_”:—2(“[*1)("!-%]_[}‘__})—}Fm}

Exercise:

1) Expand e up to Second degree terms by using Maclaurin's theorem
2) Expand Log (1 - x -y ) up to Third degree terms by using Maclaurin's theorem

3) Expand x2y about the point (1,-2) by Taylor's expansion

4) Obtain the Taylor's expansion of e* Siny about the paint (0% ) up to Second degree terms
5) Expand esi™ up to the term containing x4
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Maxima and Minima:-

In mathematics, the maximum and minimum (plural: maxima and minima) of a
function, known collectively as extrema (singular. extremum), are the largest and
smallest value that the function takes at a point within a given neighborhood.

A function f (x, y) is said to have a Maximum value at (a,b) if their exists a
neighborhood point of (a,b) (say (a+h, b+k)) such that f (a, b) > f(a+h, b+k).
Similarly,

Minimum value at (a,b) if there exists a neighborhood point of (a,b) (say (a+h,
b+k)) suchthat  f(a, b) < f(a+h, b+k).

A Minimum point on the graph (in red) f (x.y) = x* + y*(1- x)°

A Maximum point on the graph is at the top (in red)
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A saddle point on the graph of z=x2-y2 (in red)

Saddle point between two hills.

Necessary and Sufficient Condition:-

e If f,=0and f, =0 (Necessary Condition)

Function will be minimum if AC-B*> 0and A > 0
Function will be maximum if AC-B*>> 0and A <0
Function will be neither maxima nor minima if AC-B> < 0
If AC-B* =0 we cannot make any conclusion without any

further analysis where A= f., B= f, C=f,
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Working Procedure:-

*  First we find Stationary points by considering

fi=0and f, =0.
. Function will be minimum if AC-B*> 0 and A > 0 at that
stationary point

*  Function will be maximum if AC-B*>> 0 and A < 0 at that
stationary point

*  Function will be neither maximum nor minimum if AC-B*< 0
at that stationary point and it is called as SADDLE POINT.

25. Explain Maxima & Minima for Functions of Two Variables& hence obtain the Necessary
Conditions for Maxima, Minima.

Solution: Let Z = f (x,y) be a given function of two independent variables x & y. The above equation
represents a surface in 3D.

A (a,b) f(a.b)
Z=f(xy)
A=f(ab)
>Y
a 0
N
v b M(a,b)
X

A given points (a,b) on the surface has Co-ordinates [ab, f (a,b)]
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Definition:

The function Z = f (x,y) is said to be a maximum at the point (a,b) if f (x,y) < f (a,b)
in the neighborhood of the point (a,b)

A

V

Definition:

The function Z = f (x,y) is said to posses a minimum at the point (a,b) if f (x,y) > f
(a,b) in the neighborhood of the point (a,b)

Necessary Condition for Maxima, Minima:
If Z = f (x.y) has a max or min at (a,b) then f, (a,b) =0, f, (a,b) =0
Sufficient Conditions for Maxima, Minima:
PutR =f« (ab), S=fy (ab), T=1y(ab)
(1) Suppose S2-RT >0
There is no maxima or minima at (a,b)
(2) Suppose S2-RT <0
Thus there is maxima or minima at (a,b) accordingas R<0OrR >0

(3) Suppose S2 - RT =0, Then there is a saddle point at (a,b)
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26. Find the maxima and minima of the functions f (x,y) = x3 + y3 - 3axy, a > 0 is constant.
Solution: Given f (x,y) = x? +y3 - 3axy

fc = 3x2 - 3ay, f, = 3y? - 3ax

fe = 6x fyy = By.

Putf, =0, f, = 0 and solve

ie., 3x2-3ay=08&3y?-3ax =0

ie,x?=ay&y’=ax

a

:}y:i S (i] =ax (-_-xZ:ay)

soxt=ak

e, x(x*-a%)=0

~x=0x=a

=y=0,y=+a

.. The critical Or stationary points are (0,0), (a,a) and (a,-a)
(1) At (0,0)

R =1« (0,0)=0

S=1y(0,0)=-3a

T=1y(0,0)=0

o §-RT=9a2-0=9a?>0

.. There is neither a maximum or a minimum at (0,0)
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27. Examine the following functions for extreme values f = x4 + y* - 2x2 + 4xy — 2y2

Solution:
fi=4x3—4x + 4y

fy =4y’ —4x -4y
fy=4, fa=12x2-4, f,=12y2-4
Put f, =0, f,=0 and solve
ie, 4 -4x+4y=0 - (1)
4yi+4x-4y=0 - (2)
Adding (1) & (2), we get
4(x3+y)=0

e, x¥+yi=0
ie,y=-x

Substitute y = -x in (1), we get
43 -4x-4x=0
ie, 4x3-8x=0
e, x-2x=0 =>x(x2-2)=0
e, x=0&x2-2=0
ie,x=08&x=++2

x=+2,-2

~x=0, ¥2 - /2 and corresponding values of y are y = 0, - V2, 42

.. The critical points are (0,0), EE\E] 4 [«5 \@

(1) at (0,0)

R=f«(0,0)=-4
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S=fy(0,0)=4
T=1,(0,0)=4
. S2-RT=16-(4) (4)=16-16=0

i.e., 2= RT =0, These is a saddle point at (0,0)

(2) at
2.3

R=fxx£/5,-d§ ]=24_4=20
S=ty {242 }4
T=ty (2,-12 ]=2o
- 82-RT =16 - (20) (20) = 16 — 400 = -384 < 0
Thus these is neither maximum nor minimum accordingtoR<00rR>0at{J5.-\5 ]

Hence R =20 >0
. There s aminimum at (V2 ,- V2 ]
o fua = W2) +(V2) - 20V2) +av2(42)-2( V2]
=4+4-4-8-4

=.8
(3)at[-J§.J§]
R=fu (- v2.v2) =20>0
S =1y (—ﬁﬁ) =4

T=ty (+2.42) =20
- 82-RT=16-400=-384<0
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Since R> 0, ... There is minima at (— V2,2 ) '

S fmn=-8at (—\/5‘\/5)
. Extreme Value =-8 at (- v2,42) & (- v2.42)

Exercise:

1) Find the extreme values of f=x"y* (1-x—y)
2) Determine the maxima or minima of the function Sin x + Sin y + Sin (x + y)
3) Examine the function f(x,y) = 1+ sin( x2 + y2) for extremum.

28. If PV2= K and if the relative errors in P is 0.05 and in V is 0.025 show that the error in K
is 10%.

Solution: PV* = Kbydata. Also % =0.05 and % =0.025

= log P+2 log V=1Ilog K
= 0(logP)+ 26 (logV)= d(log K)

ie., lé’P-}« 2-io'V = ic')'K
P Vv K
ie., 0.05+2(0.025) =£ orﬁzo.l
K K
%x 100=(0.1)x100=10

Thus the errorin K is 10%.
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29.  The time T of a complete oscillation of a simple pendulum is given by the fom'
T=2xllg-

(i) If g is a constant find the error in the calculated value of T due to an error of 3%
in the value of |.

(ii) Find the maximum error in T due to possible errors upto 1% in |
and 3% in g.

Solution :

(i) T=2mJll/g, g = Constant, $x100=3
= logT=l0g2;r+%(logf—lﬂg g)
:a'{logT)=J(log2r)+%5(logé;)
i.e..£=0+lé!——0 —

T 2.l

0r£x100= l 0—!><100J=l6)= 1.5
Y i 201 2

.. theerrorin T = 1.5%.

(ii) If g is not a constant we have,

E)<l[)(]=l[§>-<10(}J—l QXIOO
i 201 2\ g

The error in T will be maximum if the error in | is positive and the error in g is negative (or vice-

versa) as the difference in errors converts in to a sum.
max(gx 100]= l(+l') = l(—3): 2
r 2 2

.. the maximum error in T is 2%.
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30.  The current measured by a tangent galvanometer is given by the relation

c=ktan & where @ is the angle of deflection. Show that the relative error in c due to a

given error in & is minimum when & = 45°.

Solution : Consider ¢ = k tan @. K is taken as a constant.
= log c=log k +log(tan@)
=d(loge) =8(logk) + dlog(tan )

e, ta=042% 9 5
¢ tan @
10 L0 L o o B 0O
¢ sinf cos @ ¢ sinfcosé
:'.e.,iz _2 oo
c sin28

The relative error in ¢ being &/ ¢ minimum when the denominator of the R.H.S. is maximum

and the maximum value of a sine function is1.

- sin20=1=20=90" or 9=45".

Thus the relative error in ¢ is minimum when @ = 45°

31. i T= % mv” is the kinetic energy, find approximately the change in T as m changes
from 49 to 49.5 and v changes from 1600 to 1590. 6 Marks
Solution : We have by data T = ~]2—mv: and

m=49 m+om=495 . dm=05
v=1600,v+ov=1590 .. 6v=-10
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Wehave tofind 7. (logarithm is not required) '

y dl — %5("“’1)

1 ”
p— ” » 1! Y =
> {m(bl ov) + ona }

1'.:?.=%{(49) (2) (1600) (~10)+ (0.5) (1600)° }=1,44,000

Thus the changein 7 = 6T = —1.44,000

32. The pressure p and the volume v of a gas are concentrated by the relation
pv'* =constanr. Find the percentage increase in pressure corresponding to a
diminution of %% in volume.

Solution :
pv'* = Constant = ¢(say), by data.
= logp+14log v=logce
= d(log p) +1.46(logv) =d(loge)
ie, e - l.4[ﬁw, =0; Butix 100 =- l. by data.

P v ) v 2

.‘.QXIOO-HA(@)(IOOJ:O or@xlOO=+O.7.

P v P
Thus the percentage increase in pressure = 0.7

33.  Find the percentage error in the area of an ellipse when an error of +1% is made in

measuring the major and minor axis.

Solution : For the ellipse x* /a® + y* /b* =1 the area (A) is given by z ab where 2a and 2b are

the lengths of the major and minor axis.
Let2a=xand2b=y.
By data é>< 100 = l.gx 100=1.
X

‘!
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[t

A=mab =x -

}z- '
=—2xy
4

1 | =

T~

slog A=log (7/4)+logx+logy

= o(logA)=Jlog(x/4)+(logx)+ d(log y)

e B0+, 0 A 100=Z 100+ 2 x100
A X "? A \ _'}’
oA

S—x100=1+1=2
A

Thus error in the area = 2%

27.  If the sides and angles of a triangle ABC vary in such way that the circum radius
remains constant, prove that

da ob oc
+ + =0
cosA cosB cosc
Solution : If the triangle ABC is inscribed in a circle of radius r and if a,b,c respectively
denotes the sides opposite to the angles A,B,C we have the sine rule (formula) given by
a_ _ b ¢ _
sinA sinB sinC

ora=2rsinA,b=2rsinB,c=2rsinC

2r

= oa=2ro (sinA), ob=2rd(sinB), dc=2rd(sinC)
ie., da=2rcos AGA, ob=2rcos BB, é¢=2rcosCoC

%A -2 2,58 25

or =
Cos A cos B cosC

Adding all these results we get,

s + e + g =2r(6A+ 0B+ 8C)=2ré6(A+ B+ C)

cosA cosB cosC

But A+B+C =180 = x radians = constant.
= 0(A+B+C)=0 (constant) =0
oa ob oc

Thus + + =0
cosA cosB cosC
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